TSLN: Time-Series Lean Notation

A Novel Data Serialization Format for Token-Efficient Analysis with Large Language
Models

Chandan Bhagat
chandan.bhagat@turboline.ai
Turboline Ltd

Manas Mudbari
manas .mudbari@turboline.ai
Turboline Ltd

January 2026

Abstract

The integration of Large Language Models
(LLMs) with real-time time-series data presents a
significant economic challenge: token-based pric-
ing models make data transmission costs pro-
hibitive at scale. We introduce TSLN (Time-
Series Lean Notation), a specialized data seri-
alization format achieving 68-73% token reduc-
tion compared to JSON through innovative en-
coding strategies. TSLN employs schema-first
architecture, relative timestamps, differential en-
coding, and adaptive repeat markers optimized
for temporal patterns. Comprehensive bench-
marks across cryptocurrency, stock market, and
IoT datasets demonstrate consistent compres-
sion ratios of 70%-+ while maintaining lossless
fidelity. For applications processing 1 million
records daily, TSLN enables annual savings ex-
ceeding $18,000 in LLM API costs. This work
contributes a production-ready format, empiri-
cal validation methodology, and economic impact
analysis, establishing a foundation for token-
efficient Al-powered time-series analytics.

Keywords: Large Language Models, Data Se-
rialization, Time-Series Compression, Token Op-
timization, AI Economics

1 Introduction

The proliferation of Large Language Model
(LLM) services has created unprecedented op-
portunities for Al-powered data analysis. How-
ever, the token-based pricing models employed

by services such as OpenAl's GPT-4 ($30-
$60/million tokens) and Anthropic’s Claude ($3-
$15 /million tokens) introduce a fundamental eco-
nomic constraint: data transmission costs scale
linearly with token count [I} 2].

For applications processing high-frequency
time-series data—cryptocurrency markets, stock
exchanges, IoT sensor networks—traditional se-
rialization formats (JSON, CSV) generate token
counts that make continuous Al analysis eco-
nomically infeasible. A single analysis of 500
cryptocurrency data points in JSON format con-
sumes approximately 20,000 tokens, translating
to $0.60 per analysis at current GPT-4 pric-
ing. At scale, these costs compound rapidly: a
platform performing 1,000 analyses daily incurs
$219,000 annually in token costs alone.

1.1 Research Problem

Traditional data serialization formats optimize
for human readability (JSON) or general-purpose
data interchange (CSV), neither considering the
token-based economics of LLM analysis. This
misalignment creates three critical challenges:

1. Economic Inefficiency: Verbose formats
generate excessive tokens, inflating API
costs by 3-4x compared to theoretically op-
timal representations

2. Context Window Limitations: Token-
heavy formats reduce the amount of histor-
ical data that fits within LLM context win-
dows (typically 128K-200K tokens)

3. Latency Impact: Token processing time
scales linearly with count, introducing un-
necessary delays in real-time applications

1.2 Contributions

This paper makes the following contributions:

e Novel Format Design: We introduce
TSLN, a schema-first, time-series-aware se-
rialization format achieving 68-73% token
reduction versus JSON

e Adaptive Encoding Framework: We
present algorithms for automatic analysis of
data characteristics and optimal strategy se-
lection per field

e Comprehensive Empirical Validation:»i
We provide benchmarks across diverse,
datasets (cryptocurrency, stock market, IoT .
sensors, news aggregation) totaling 85,000+ >
data points

e Economic Impact Analysis: We quan-
tify cost savings and break-even points for
production deployment

e Production Implementation: We de-
scribe a complete TypeScript implementa-
tion with 1,700+ lines of production code
and comprehensive test coverage

1.3 Paper Organization

The remainder of this paper is organized as fol-
lows: Section [2| surveys related work in data
serialization and time-series compression. Sec-
tion [3] presents TSLN’s design principles and for-
mat specification. Section [4] details our encoding
strategies and algorithms. Section [5| describes
the implementation architecture. Section [6] pro-
vides comprehensive performance analysis and
comparative benchmarks. Section[7]discusses use
cases and deployment scenarios. Section [8| ad-
dresses limitations and trade-offs. Section [3 out-
lines future research directions, and Section
concludes.

2 Related Work and Back-
ground

2.1 Data Serialization Formats

2.1.1 JSON (JavaScript Object Nota-
tion)

JSON [3] has become the de facto standard for
web APIs and data interchange due to its human
readability and universal tool support. However,
its verbosity creates significant overhead: object
keys repeat for every record, syntactic elements
(braces, quotes, commas) consume tokens, and
no temporal pattern compression exists.

Example:
JSON:

Two cryptocurrency records in

[}

{"timestamp": "2026-01-15T10:00:00Z",

"symbol": "BTC", "price": 50000.00},
{"timestamp": "2026-01-15T10:00:01Z",
"symbol": "BTC", "price": 50125.50}

6]

Listing 1: JSON format example

Token count: ~140 tokens (using GPT-4 tok-
enizer).

2.1.2 CSV (Comma-Separated Values)

CSV [4] reduces overhead through a single header
row but sacrifices type information and nested
structure support. Full timestamps repeat de-
spite temporal regularity, and categorical values
(e.g., repeated symbols) receive no compression.

Token count: =70 tokens for equivalent data
(50% reduction vs JSON).

2.1.3 Protocol Buffers and Apache Avro

Binary formats like Protocol Buffers [5] and
Apache Avro [6] achieve excellent compression
but are incompatible with text-based LLM in-
puts. These formats require decoding to text
before LLM consumption, negating compression
benefits for AI analysis use cases.

2.1.4 TOON (Token-Optimized Object
Notation)

TOON [7] represents recent work on token-
efficient formats, employing schema-first design
and compact symbols (@ for null, checkmarks
for boolean). However, TOON lacks time-series-
specific optimizations: timestamps remain abso-
lute, numeric values use no differential encoding,
and categorical fields receive minimal compres-
sion.

Token count: ~60 tokens (57% reduction vs
JSON, but 40% worse than TSLN).

2.2 Time-Series Compression

2.2.1 Gorilla Compression (Facebook)

Facebook’s Gorilla time-series database [8] em-
ploys delta-of-delta timestamp compression and
XOR-based value encoding, achieving 12X com-
pression for metrics data. However, Gorilla uses
binary encoding incompatible with LLM text in-
puts.

TSLN adapts Gorilla’s delta-of-delta concept
for text-based representation, trading binary
compression efficiency for LLM compatibility.

2.2.2 InfluxDB Compression

1

InfluxDB [9] combines delta encoding, run-length
encoding (RLE), and dictionary compression for
time-series storage. Like Gorilla, InfluxDB’s bi-4
nary format requires decoding before LLM anal-°

. €
ysis. '

7

2.3 Token Optimization for LLMs !

Prior work on prompt engineering [10), 11| fo-
cuses on structuring prompts for improved rea-
soning, but does not address data serialization
efficiency. Recent research on context window
utilization [12] emphasizes fitting more informa-
tion within token limits, motivating the need for
compressed data formats.

Our work differs by providing a general-
purpose serialization format specifically engi-
neered for token efficiency while maintaining loss-
less compression and LLM interpretability.

3 TSLN Design Principles

3.1 Core Principles

TSLN’s design follows five fundamental princi-
ples:

1. Schema-First Architecture: Structure
defined once eliminates per-record key repe-
tition

2. Temporal Awareness: Exploit time-series
patterns (regularity, correlation) for com-
pression

3. Adaptive Encoding: Automatically se-
lect optimal strategy per field based on data
characteristics

4. Lossless Compression: Maintain perfect
fidelity—decode(encode(data)) = data ex-
actly

5. LLM Compatibility: Remain text-based
and directly parseable by language models

3.2 Format Overview

A TSLN document comprises three sections:

TSLN/2.0

Schema: t:timestamp s:symbol f:price i
:volume

Base: 2026-01-15T10:00:00Z

Interval: 1000ms

Encoding: dd, r, d, d

0IBTC|50000.00(1234567
0l=1+125.50]+12340
0l=1+89.25]-8900

Listing 2: TSLN structure

Header Section: Metadata and schema def-
inition

Separator: Three dashes (--)

Data Section: Pipe-delimited positional val-
ues

3.3 Type System

TSLN defines eight primitive types with compact
representations:

Table 1: TSLN Type System

Code Type Use Case

t Timestamp Time-series points

i Integer Whole numbers, counts
f Float Decimal values, prices
S String Short categoricals

b Boolean Binary states

e Enum Indexed categories

a Array Lists

o Object Nested structures

4 Encoding Strategies

4.1 Delta-of-Delta Timestamps

For time-series with regular intervals, times-
tamps compress via second-order differences:

Definition 1 (Delta-of-Delta Encoding). Given

a sequence of timestamps T = {ti,t2,...,tn}
with base tg, define:
E(t1) =t —to (1)
E(tz) = (t2 — t1) — (t1 — to) (2)
E(ti) = (ti — ti-1) — (ti-1 —ti—2), >3 (3)

Theorem 1 (Regular Interval Compression).
For perfectly reqular intervals with spacing A,
delta-of-delta encoding yields E(t;) = 0 for all
1 > 3, achieving near-mazximal compression.

Proof. For regular intervals, t; —t;_1 = A for all
1. Thus:

E(t;) = (ti — ti—1) — (tic1 — ti—2)
—A-A=0

This single-digit encoding (“0”) represents 96 %+
compression versus 24-character ISO-8601 times-
tamps.]

4.2 Differential Encoding for Numeric
Fields

The threshold 0.5 - [vcyrrent| ensures differential
encoding only applies when it reduces charac-
ter count. This adapts to data volatility: low-
volatility sequences see high differential usage,
while high-volatility data falls back to absolute
values.

Algorithm 1 Differential Encoding Decision

1: function ENCODEDIFFERENTIAL(Vcurrent,

Uprev)

2: if vprev = NULL then

3: return FORMATNUMBER (Vcurrent)

4: end if

o A 4 Vcurrent — Uprev

6: if |A] < 0.5 |vcurrent| then

7 if A =0 then

8: return “="

9: else if A > 0 then

10: return 7 + 7 +
FORMATNUMBER(A)

11: else

12: return FORMATNUMBER(A)

13: end if

14: else

15: return FORMATNUMBER (Ucurrent)

16: end if
17: end function

4.3 Repeat Marker Compression

For categorical fields with high repeat rates, the
symbol “=" indicates “same as previous”

Definition 2 (Repeat Rate). For a field with

values V = {v1,va,...,v,}, the repeat rate R is:
o Hvizvi#via)
n—1

Proposition 2 (Repeat Marker Efficiency). For
a categorical field with average value length £
characters and repeat rate R, repeat marker com-
pression achieves:
-1
Compression = R - 7
Example: Symbol field “BTC” (3 characters)
with R = 0.90:

3—1
Compression = 0.90 - —5 = 0.90 - 0.667 = 60%

4.4 Volatility-Adaptive Strategy Se-
lection

Data characteristics inform encoding decisions
via volatility analysis:

Definition 3 (Coefficient of Variation). For a
numeric field with values X = {x1,...,x,}, the
coefficient of variation is:

7 \/% Yoy (x — z)?

1 |Z|

cv

Algorithm 2 Encoding Strategy Selection
SELECTSTRAT-

1: function
EGY(field analysis)

2: CV < field analysis.volatility

3: R <+ field analysis.repeatRate

4: if field analysis.type = timestamp then

5: if isRegularInterval(field analysis)
then

6: return DELTAOFDELTA

7 else

8: return DELTA

9: end if

10: else if R > 0.4 then

11: return REPEATMARKERS

12: else if CV < 0.3 and isNumeric then

13: return DIFFERENTIAL

14: else if CV < 0.7 and isNumeric then

15: return SELECTIVEDIFFERENTIAL

16: else

17: return ABSOLUTE

18: end if
19: end function

This adaptive approach ensures optimal com-
pression across diverse data characteristics with-
out manual configuration.

5 Implementation Architecture

5.1 System Components

The TSLN implementation comprises three pri-
mary modules:

1. Type Analyzer: Examines dataset to com-
pute field-level statistics (type, volatility, re-
peat rate) and recommend encoding strate-
gies

2. Schema Generator: Creates optimized
schema with field ordering based on com-
pression potential

3. Encoder/Decoder: Applies encoding al-
gorithms and maintains state for stateful
strategies (differential, repeat markers)

5.2 Algorithmic Complexity

Theorem 3 (TSLN Encoding Complexity). For
a dataset with n records and f fields, TSLN en-
coding has:

e Time complezity: O(n - f)
e Space complexity: O(n - f) (output size)

o Analysis overhead: O(n- f+ flog f) for type
analysis and field ordering

Proof. Type Analysis: Single pass over dataset
computes per-field statistics in O(n - f). Field
ordering via sorting takes O(f log f).

Encoding: Iterating over all values requires
O(n - f). Each encoding operation (differential,
repeat marker) executes in O(1) with constant-
space state maintenance.

Space: Output size scales linearly with com-
pressed data, bounded by O(n - f) in worst case
(no compression). O

5.3 Streaming Mode

For applications requiring constant memory,
TSLN supports streaming encoding;:

Algorithm 3 Streaming TSLN Encoder

1: function STREAMENCODE(dataStream,
schema)
state <— INITIALIZESTATE(schema)
EMITHEADER(schema)
for record € dataStream do
encoded —
ENCODERECORD(record, state)
EMmiIT(encoded)
state «— UPDATESTATE(state, record)
end for
end function

Streaming mode achieves O(1) space per
record with O(f) state maintenance, enabling
real-time encoding of unbounded data streams.

6 Performance Evaluation

6.1 Experimental Setup
6.1.1 Datasets

We evaluate TSLN across four representative
datasets:

Table 2: Evaluation Datasets

Dataset Records Fields CV
Cryptocurrency 10,000 6 0.15
Stock Market 50,000 8 0.65
IoT Sensors 25,000 7 0.38
News Aggregation 1,000 5 N/A

6.1.2 Metrics

e Token Efficiency: Count using GPT-4 to-
kenizer (cl100k base)

TSLN tokens

e Compression Ratio: 1 — 558 tckens

e Encoding Time: Wall-clock time for con-
version (TypeScript, Node.js 20)

e Economic Impact: Cost savings at GPT-
4 pricing ($30/MTok input, $60/MTok out-
put)
6.2 Token Efficiency Results

Figure [I| presents token counts across formats
and datasets.

Table 3: Token Reduction Summary

100 a

ot
jes}
T

Token Count (thousands)

!

Stock IoT

1

Crypto
’DDJSONDDCSVDDTOONHTSLN \

News

Figure 1: Token count comparison across formats

6.3 Encoding Performance

Figure [2] shows encoding times versus dataset
size:

I
—eo— TSLN

—=-JSON

1,500 -

1,000 |

500

Encoding Time (ms)

Dataset Size (records) .104

Figure 2: Encoding time vs dataset size

TSLN exhibits linear O(n) scaling with en-
coding overhead of approximately 36ms per 500

Dataset JSON TSLN Red. vs TOOMords. While slower than JSON serialization
Cryptocurrency 51480 14720 72% 41% (<1ms), this one-time cost is negligible compared
Stock Market 128,340 41,150 68% 349 to repeated LLM analysis costs.

IoT Sensors 64,260 18,210 T72% 42%

News Agg. 12,500 4,125 67% 32% 6.4 Compression by Data Character-
Average - - T0% 37% istic

Results demonstrate consistent 68-72% token
reduction versus JSON across diverse data char-
acteristics. TSLN outperforms TOON by 32-42%
through time-series-specific optimizations.

Table [] demonstrates compression effectiveness
versus volatility:

Even with high volatility (CV > 1.0), TSLN
maintains >65% compression through schema
optimization and repeat markers.

Table 4: Compression vs Volatility

Volatility CV Compression Strategy
Very Low 0.05 77% Differential
Low 0.15 75% Differential
Moderate 0.35 72% Selective
High 0.65 68% Absolute
Very High 1.20 66% Absolute

6.5 Economic Impact Analysis

Table 5: Annual Cost Savings (GPT-4 Pricing)

Volume JSON TSLN Savings
(rec/day) ($/year) ($/year) ($/year)
M $26,460 $7,776 $18,684
10M $264,600 $77,760 $186,840
100M $2.646,000 $777,600 $1,868,400

For high-volume applications, TSLN enables
substantial cost reductions. A platform pro-
cessing 1M records daily saves $18,684 annu-
ally—sufficient to fund multiple engineering posi-
tions or enable 4x data volume expansion within
existing budgets.

6.6 Real-World Deployment Case
Study

We deployed TSLN in a production cryptocur-
rency analytics platform processing 100+ sym-
bols at 1-second intervals with LLM analysis ev-
ery 5 minutes:

e Pre-TSLN: 288 daily analyses, 1.7M token-
s/day, $3.40/day, $1,241 /year

e Post-TSLN: 288 daily analyses, 442K to-
kens/day, $0.88/day, $321/year

e Savings: $920/year (74% reduction)

Additional benefits observed:

e 60% latency reduction (analysis turnaround:
3.2s — 1.3s)

e 4x increase in historical context per analysis
(within existing token budget)

e Ability to add 50+ additional symbols with-
out proportional cost increase

7 Applications and Use Cases

7.1 Financial Market Analytics

Scenario: Real-time equity analysis for institu-
tional traders

TSLN enables cost-effective multi-timeframe
analysis, comparing;:

e Intraday patterns (l-minute bars, past 6
hours)

e Daily trends (past 30 days)
e Weekly patterns (past year)

All within a single LLM prompt, versus JSON
requiring separate queries per timeframe due to
context window limits.

7.2 10T Anomaly Detection

Scenario: Predictive maintenance for industrial
sensor networks

With 1,000 sensors at 1-minute intervals,
TSLN compresses 24 hours of data from 2.59MB
JSON to 627KB TSLN—enabling comprehensive
multi-sensor correlation analysis in a single LLM
call versus expensive batch processing.

7.3 News Sentiment Analysis

Scenario: Financial news aggregation platform

TSLN’s repeat marker compression excels with
categorical fields (news sources, sentiment cate-
gories), achieving 85%-+ compression on source
fields and enabling efficient multi-source senti-
ment trend analysis.

8 Limitations and Trade-offs

8.1

TSLN encoding (36ms per 500 records) is 36x
slower than JSON serialization. However, for Al
analysis workflows where encoding occurs once
and LLM queries occur repeatedly, this one-time

Encoding Overhead

cost is negligible compared to 70% reduction in
ongoing API costs.

Mitigation:
peated queries, or use streaming mode for real-
time applications.

Pre-encode and cache for re-

8.2 Human Readability

TSLN sacrifices human readability for token effi-
ciency. While JSON is immediately understand-
able, TSLN requires schema interpretation.
Mitigation:
maintain JSON export options for debugging.
For production Al analysis,
pretability prioritizes over human readability.

Provide decoder utilities and

machine inter-

8.3 Limited Tool Ecosystem

No native TSLN parsers exist in common data
tools (pandas, Excel, Tableau). Integration re-
quires conversion utilities.

Mitigation: Implement format converters
(tslnToJSON, tsInToCSV) and pandas integra-
tion (planned).

8.4 Schema Evolution

Adding fields to historical TSLN archives re-
quires re-encoding with updated schema. This
contrasts with schema-free JSON where new
fields append naturally.

Mitigation: Version schemas explic-
itly (TSLN/2.0 vs TSLN/2.1) and support
backward-compatible parsing.

8.5 Appropriate Use Cases

TSLN optimizes for time-series with:
e Regular or semi-regular intervals
e High categorical repeat rates
e Low-to-moderate numeric volatility
e Al-first analysis workflows
TSLN is not recommended for:

e Deeply nested documents

[SL I U]

e Extremely high volatility data (random
noise)

e Single-record operations (overhead not jus-
tified)

e Human-primary interfaces (dashboards, re-
ports)

9 Future Work

9.1 Run-Length Encoding

Compress long sequences of identical values:
BTC|BTC|BTC|BTC — BTC*4

Expected Impact: Additional 5-10% com-
pression for stable categorical fields.

9.2 Binary TSLN (BTSLN)

Binary-encoded variant for archival storage, de-
coded to text for LLM analysis:

e Varlnt timestamps
e [EEE 754 half-precision floats
e Length-prefixed strings

Expected Impact: 40-50% additional stor-
age savings.

9.3 Dictionary Encoding

Replace high-cardinality categorical values with
numeric indices:

Dictiomary: 0=BTC, 2=XRP
Schema: e:symbol
0/50000.0011234567
113200.001890123

210.52[15000000

1=ETH,

Listing 3: Dictionary encoding example
Expected Impact: 60-80% compression for
high-cardinality fields.
9.4 ML-Optimized Encoding

Train XGBoost classifier on dataset features
(volatility, repeat rate, distribution, domain) to
predict optimal encoding strategies:

N

Hypothesis: ML may discover non-obvious
patterns, achieving 5-10% additional compres-
sion.

9.5 LLM Tokenizer Alignment

Research whether certain delimiters or syntactic
structures tokenize more efficiently:

o Test delimiters: |, ,, ;, :

e Measure tokenization across GPT-4,
Claude, Gemini
e Potentially 5-15% savings through

tokenizer-aware design

9.6 Cross-Feed Compression

Exploit similarities across related feeds by
reusing schemas:

Feed 1 (BTC): [schema] [datal

Feed 2 (ETH): [schema ref:feedl] [datal

Listing 4: Schema reuse example

Expected Impact: 5-10% header overhead
reduction for multi-symbol queries.

10 Security Considerations

10.1 Injection Attacks

TSLN parsers must never execute string values
as code. Implementations should:

e Validate all inputs against schema
e Sanitize pipe characters and special symbols

e Set parsing limits (max fields: 1000, max
depth: 10, timeout: 5s)

10.2 Denial of Service

Malformed TSLN data (excessive fields, deeply
nested structures, malformed encoding hints)
could cause parser hangs.

Mitigation: Implement timeouts, field count
limits, and depth limits as defense in depth.

10.3 Privacy Considerations

Delta encoding preserves relative patterns even
if absolute values are encrypted. For sensitive
data, consider:

e Disabling differential encoding for sensitive
fields

e Applying differential privacy noise

e Encrypting both values and deltas

11 Conclusion

This paper introduced TSLN (Time-Series Lean
Notation), a novel data serialization format
achieving 68-73% token reduction compared to
JSON through time-series-aware encoding strate-
gies. Comprehensive empirical evaluation across
cryptocurrency, stock market, IoT, and news
datasets demonstrates consistent compression
performance while maintaining lossless fidelity.

For applications processing high-frequency
time-series data with LLM analysis, TSLN en-
ables transformative economic benefits: plat-
forms with 1M daily records save $18,684 annu-
ally, enabling 4x data volume expansion within
existing budgets or funding additional engineer-
ing resources.

Beyond practical impact, TSLN demonstrates
important principles:

e Domain-specific optimization: General-
purpose formats underperform for special-
ized use cases

o Al-first design: Formats can optimize
for machine consumption while remaining
human-inspectable

e Adaptive strategies: Data characteristics
should inform encoding decisions

As LLMs become increasingly integrated into
real-time systems, token efficiency will become
as critical as bandwidth efficiency in the early
internet era. TSLN provides a production-ready
foundation for token-efficient Al-powered time-
series analytics, with extensive opportunities for

future enhancement through run-length encod-
ing, dictionary compression, and ML-optimized
strategies.

The cost of data transmission to Al is no
longer negligible. TSLN makes it manage-
able.

Acknowledgments

We thank the Turboline engineering team for
production deployment feedback, and the anony-
mous reviewers for valuable suggestions that im-
proved this paper.

Availability

TSLN implementations are available under MIT
license:

e TypeScript: github.com/turboline-ai/tsln-

node

e Python:
python

github.com /turboline-ai/tsln-

e Go: github.com/turboline-ai/tsln-go

References

[1] OpenAl. “GPT-4 Pricing.”
//openai.com/pricing, 2025.

https:

[2] Anthropic. “Claude API Pricing.” https://
docs.anthropic.com/, 2025.

[3] T. Bray. “The JavaScript Object Notation
(JSON) Data Interchange Format.” RFC
8259, IETF, 2017.

1
1

[4] Y. Shafranovich. “Common Format and
MIME Type for Comma-Separated Values
(CSV) Files.” RFC 4180, IETF, 2005.

1

[5] Google. “Protocol Buffers.” https:
//protobuf .dev/|, 2024.
[6] Apache Software Foundation. “Apache

Avro.” https://avro.apache.org/, 2024.

15

N}

[7] TOON Specification. “Token-Optimized Ob-
ject Notation.” Internal Documentation,
2024.

[8] T. Pelkonen et al. “Gorilla: A Fast, Scalable,
In-Memory Time Series Database.” VLDB,

8(12):1816-1827, 2015.

InfluxData. “InfluxDB Time Series Data
Storage.” https://docs.influxdata.com/,
2024.

19]

[10] J. Wei et al. “Chain-of-Thought Prompting
Elicits Reasoning in Large Language Mod-
els.” NeurIPS, 2022.

[11] T. Kojima et al. “Large Language Models
are Zero-Shot Reasoners.” NeurIPS, 2022.

[12] N. Liu et al. “Lost in the Middle: How Lan-
guage Models Use Long Contexts.” TACL,

2023.

A Complete TSLN Grammar

document = {comment}, header,
separator, {data_linel} ;
comment = ’#’, {any_char - newline
}, newline ;
3 header = ’Q°, field_def, {’|°,

1
-
5

6
7

8
9
0
1
2
3

1

>

10

field_def}, newline
field_def
type_code,

field_name,
[encoding_spec]

’ .

>

>

encoding_spec = ’<’, encoding, {’,’,
param}, ’>°

separator = 7---7) newline ;

data_line = value, {’|’, valuel,
newline ;

value = number | string |
boolean | null | delta_marker ;

delta_marker = (’+° | ’-?), number ;

null = 2 | > L ;

boolean = 2T | °F> | 21> | ’0°

number = [>-°], digit, {digit},
[>.7, {digit}] ;

field_name = letter, {letter | digit
) 2_°F 3

type_code =i’ | f2 | s’ | 2t |
’b? | T | ’a? | 70

encoding = ’d’ | ’dd’ | ’r’> | ’p’ |

Yz

Listing 5: EBNF Grammar for TSLN

https://openai.com/pricing
https://openai.com/pricing
https://docs.anthropic.com/
https://docs.anthropic.com/
https://protobuf.dev/
https://protobuf.dev/
https://avro.apache.org/
https://docs.influxdata.com/

B Type System Details

Table 6: Complete Type System Reference

Code Type Example Encoding
t:delta Timestamp 1000 Delta from base
t:interval Timestamp 5 Index
t:absolute Timestamp 2026-01-15T... ISO-8601
f:float Float 50000.00 Decimal
i:int Integer 1234567 Whole
s:symbol String BTC Text
b:bool Boolean 1 Binary
e:enum Enum 2 Index
a:array Array [1,2,3] JSON
o:object Object {...} JSON

C Extended Benchmark Results

Table 7: Detailed Compression by Field Type

Field Type Mechanism Min Avg Max Dataset
Timestamp (regular) Delta-of-delta 90% 94% 96% IoT
Timestamp (irregular) — Delta 5% 82% 85% News
Categorical (low card) Repeat markers 85% 90% 95% Crypto
Categorical (high card) Dictionary 60% 70% 80% Stock
Numeric (low vol) Differential 40% 50% 60% Crypto
Numeric (high vol) Selective 10% 15% 20% Stock
Text/String Escape opt 5% 10% 15% News

D Implementation Complexity
Analysis

Table 8: Operation Complexity Analysis

Operation Time Space
Type Analysis O(n- f) o(f)
Schema Generation O(flogf) O(f)
Field Ordering O(flogf) O(f)
Encoding (full) O(n- f) O(n- f)
Encoding (streaming) O(n - f) o(f)
Decoding O(n-f) O(n- f)
Delta Decode O(n) o(1)

Where: n = number of records, f = number

of fields.

11

no

. Boolean Check:

E Encoding Decision Flowchart

The encoding decision process follows a sequen-
tial evaluation:

. Null Check: If value is null — emit “”

If value is boolean —
emit “1” (true) or “0” (false)

. Repeat Check: If value equals previous —

emit “="

. Numeric Check: If not numeric — emit

absolute value

. Differential Check: If |A] < 0.5 [v] —

emit “+A”

. Otherwise: Emit absolute value

{ Encode Value

(Y

{ Is null? J—
{ Is boolean? J——F% Emit () }
{ Equals prev? J——»ﬂ% Emit 1/0 }
—[Is numeric? } —!)% Emit = }
yes
{ A < 0.5[v]?
—{ Emit absolute Emit £A

Figure 3: Encoding decision flowchart

	Introduction
	Research Problem
	Contributions
	Paper Organization

	Related Work and Background
	Data Serialization Formats
	JSON (JavaScript Object Notation)
	CSV (Comma-Separated Values)
	Protocol Buffers and Apache Avro
	TOON (Token-Optimized Object Notation)

	Time-Series Compression
	Gorilla Compression (Facebook)
	InfluxDB Compression

	Token Optimization for LLMs

	TSLN Design Principles
	Core Principles
	Format Overview
	Type System

	Encoding Strategies
	Delta-of-Delta Timestamps
	Differential Encoding for Numeric Fields
	Repeat Marker Compression
	Volatility-Adaptive Strategy Selection

	Implementation Architecture
	System Components
	Algorithmic Complexity
	Streaming Mode

	Performance Evaluation
	Experimental Setup
	Datasets
	Metrics

	Token Efficiency Results
	Encoding Performance
	Compression by Data Characteristic
	Economic Impact Analysis
	Real-World Deployment Case Study

	Applications and Use Cases
	Financial Market Analytics
	IoT Anomaly Detection
	News Sentiment Analysis

	Limitations and Trade-offs
	Encoding Overhead
	Human Readability
	Limited Tool Ecosystem
	Schema Evolution
	Appropriate Use Cases

	Future Work
	Run-Length Encoding
	Binary TSLN (BTSLN)
	Dictionary Encoding
	ML-Optimized Encoding
	LLM Tokenizer Alignment
	Cross-Feed Compression

	Security Considerations
	Injection Attacks
	Denial of Service
	Privacy Considerations

	Conclusion
	Complete TSLN Grammar
	Type System Details
	Extended Benchmark Results
	Implementation Complexity Analysis
	Encoding Decision Flowchart

