
TSLN: Time-Series Lean Notation
A Novel Data Serialization Format for Token-Efficient Analysis with Large Language

Models

Chandan Bhagat
chandan.bhagat@turboline.ai

Turboline Ltd

Manas Mudbari
manas.mudbari@turboline.ai

Turboline Ltd

January 2026

Abstract

The integration of Large Language Models
(LLMs) with real-time time-series data presents a
significant economic challenge: token-based pric-
ing models make data transmission costs pro-
hibitive at scale. We introduce TSLN (Time-
Series Lean Notation), a specialized data seri-
alization format achieving 68-73% token reduc-
tion compared to JSON through innovative en-
coding strategies. TSLN employs schema-first
architecture, relative timestamps, differential en-
coding, and adaptive repeat markers optimized
for temporal patterns. Comprehensive bench-
marks across cryptocurrency, stock market, and
IoT datasets demonstrate consistent compres-
sion ratios of 70%+ while maintaining lossless
fidelity. For applications processing 1 million
records daily, TSLN enables annual savings ex-
ceeding $18,000 in LLM API costs. This work
contributes a production-ready format, empiri-
cal validation methodology, and economic impact
analysis, establishing a foundation for token-
efficient AI-powered time-series analytics.

Keywords: Large Language Models, Data Se-
rialization, Time-Series Compression, Token Op-
timization, AI Economics

1 Introduction

The proliferation of Large Language Model
(LLM) services has created unprecedented op-
portunities for AI-powered data analysis. How-
ever, the token-based pricing models employed

by services such as OpenAI’s GPT-4 ($30-
$60/million tokens) and Anthropic’s Claude ($3-
$15/million tokens) introduce a fundamental eco-
nomic constraint: data transmission costs scale
linearly with token count [1, 2].

For applications processing high-frequency
time-series data—cryptocurrency markets, stock
exchanges, IoT sensor networks—traditional se-
rialization formats (JSON, CSV) generate token
counts that make continuous AI analysis eco-
nomically infeasible. A single analysis of 500
cryptocurrency data points in JSON format con-
sumes approximately 20,000 tokens, translating
to $0.60 per analysis at current GPT-4 pric-
ing. At scale, these costs compound rapidly: a
platform performing 1,000 analyses daily incurs
$219,000 annually in token costs alone.

1.1 Research Problem

Traditional data serialization formats optimize
for human readability (JSON) or general-purpose
data interchange (CSV), neither considering the
token-based economics of LLM analysis. This
misalignment creates three critical challenges:

1. Economic Inefficiency: Verbose formats
generate excessive tokens, inflating API
costs by 3-4× compared to theoretically op-
timal representations

2. Context Window Limitations: Token-
heavy formats reduce the amount of histor-
ical data that fits within LLM context win-
dows (typically 128K-200K tokens)

1

3. Latency Impact: Token processing time
scales linearly with count, introducing un-
necessary delays in real-time applications

1.2 Contributions

This paper makes the following contributions:

• Novel Format Design: We introduce
TSLN, a schema-first, time-series-aware se-
rialization format achieving 68-73% token
reduction versus JSON

• Adaptive Encoding Framework: We
present algorithms for automatic analysis of
data characteristics and optimal strategy se-
lection per field

• Comprehensive Empirical Validation:
We provide benchmarks across diverse
datasets (cryptocurrency, stock market, IoT
sensors, news aggregation) totaling 85,000+
data points

• Economic Impact Analysis: We quan-
tify cost savings and break-even points for
production deployment

• Production Implementation: We de-
scribe a complete TypeScript implementa-
tion with 1,700+ lines of production code
and comprehensive test coverage

1.3 Paper Organization

The remainder of this paper is organized as fol-
lows: Section 2 surveys related work in data
serialization and time-series compression. Sec-
tion 3 presents TSLN’s design principles and for-
mat specification. Section 4 details our encoding
strategies and algorithms. Section 5 describes
the implementation architecture. Section 6 pro-
vides comprehensive performance analysis and
comparative benchmarks. Section 7 discusses use
cases and deployment scenarios. Section 8 ad-
dresses limitations and trade-offs. Section 9 out-
lines future research directions, and Section 11
concludes.

2 Related Work and Back-
ground

2.1 Data Serialization Formats

2.1.1 JSON (JavaScript Object Nota-
tion)

JSON [3] has become the de facto standard for
web APIs and data interchange due to its human
readability and universal tool support. However,
its verbosity creates significant overhead: object
keys repeat for every record, syntactic elements
(braces, quotes, commas) consume tokens, and
no temporal pattern compression exists.

Example: Two cryptocurrency records in
JSON:

1 [
2 {" timestamp ": "2026 -01 -15 T10 :00:00Z",
3 "symbol ": "BTC", "price ": 50000.00} ,
4 {" timestamp ": "2026 -01 -15 T10 :00:01Z",
5 "symbol ": "BTC", "price ": 50125.50}
6]

Listing 1: JSON format example

Token count: ≈140 tokens (using GPT-4 tok-
enizer).

2.1.2 CSV (Comma-Separated Values)

CSV [4] reduces overhead through a single header
row but sacrifices type information and nested
structure support. Full timestamps repeat de-
spite temporal regularity, and categorical values
(e.g., repeated symbols) receive no compression.

Token count: ≈70 tokens for equivalent data
(50% reduction vs JSON).

2.1.3 Protocol Buffers and Apache Avro

Binary formats like Protocol Buffers [5] and
Apache Avro [6] achieve excellent compression
but are incompatible with text-based LLM in-
puts. These formats require decoding to text
before LLM consumption, negating compression
benefits for AI analysis use cases.

2

2.1.4 TOON (Token-Optimized Object
Notation)

TOON [7] represents recent work on token-
efficient formats, employing schema-first design
and compact symbols (∅ for null, checkmarks
for boolean). However, TOON lacks time-series-
specific optimizations: timestamps remain abso-
lute, numeric values use no differential encoding,
and categorical fields receive minimal compres-
sion.

Token count: ≈60 tokens (57% reduction vs
JSON, but 40% worse than TSLN).

2.2 Time-Series Compression

2.2.1 Gorilla Compression (Facebook)

Facebook’s Gorilla time-series database [8] em-
ploys delta-of-delta timestamp compression and
XOR-based value encoding, achieving 12× com-
pression for metrics data. However, Gorilla uses
binary encoding incompatible with LLM text in-
puts.

TSLN adapts Gorilla’s delta-of-delta concept
for text-based representation, trading binary
compression efficiency for LLM compatibility.

2.2.2 InfluxDB Compression

InfluxDB [9] combines delta encoding, run-length
encoding (RLE), and dictionary compression for
time-series storage. Like Gorilla, InfluxDB’s bi-
nary format requires decoding before LLM anal-
ysis.

2.3 Token Optimization for LLMs

Prior work on prompt engineering [10, 11] fo-
cuses on structuring prompts for improved rea-
soning, but does not address data serialization
efficiency. Recent research on context window
utilization [12] emphasizes fitting more informa-
tion within token limits, motivating the need for
compressed data formats.

Our work differs by providing a general-
purpose serialization format specifically engi-
neered for token efficiency while maintaining loss-
less compression and LLM interpretability.

3 TSLN Design Principles

3.1 Core Principles

TSLN’s design follows five fundamental princi-
ples:

1. Schema-First Architecture: Structure
defined once eliminates per-record key repe-
tition

2. Temporal Awareness: Exploit time-series
patterns (regularity, correlation) for com-
pression

3. Adaptive Encoding: Automatically se-
lect optimal strategy per field based on data
characteristics

4. Lossless Compression: Maintain perfect
fidelity—decode(encode(data)) = data ex-
actly

5. LLM Compatibility: Remain text-based
and directly parseable by language models

3.2 Format Overview

A TSLN document comprises three sections:

1 # TSLN /2.0
2 # Schema: t:timestamp s:symbol f:price i

:volume
3 # Base: 2026 -01 -15 T10 :00:00Z
4 # Interval: 1000ms
5 # Encoding: dd, r, d, d
6 ---
7 0|BTC |50000.00|1234567
8 0|=|+125.50|+12340
9 0|=|+89.25| -8900

Listing 2: TSLN structure

Header Section: Metadata and schema def-
inition

Separator: Three dashes (–-)
Data Section: Pipe-delimited positional val-

ues

3.3 Type System

TSLN defines eight primitive types with compact
representations:

3

Table 1: TSLN Type System

Code Type Use Case

t Timestamp Time-series points
i Integer Whole numbers, counts
f Float Decimal values, prices
s String Short categoricals
b Boolean Binary states
e Enum Indexed categories
a Array Lists
o Object Nested structures

4 Encoding Strategies

4.1 Delta-of-Delta Timestamps

For time-series with regular intervals, times-
tamps compress via second-order differences:

Definition 1 (Delta-of-Delta Encoding). Given
a sequence of timestamps T = {t1, t2, . . . , tn}
with base t0, define:

E(t1) = t1 − t0 (1)
E(t2) = (t2 − t1)− (t1 − t0) (2)
E(ti) = (ti − ti−1)− (ti−1 − ti−2), i ≥ 3 (3)

Theorem 1 (Regular Interval Compression).
For perfectly regular intervals with spacing ∆,
delta-of-delta encoding yields E(ti) = 0 for all
i ≥ 3, achieving near-maximal compression.

Proof. For regular intervals, ti− ti−1 = ∆ for all
i. Thus:

E(ti) = (ti − ti−1)− (ti−1 − ti−2)

= ∆−∆ = 0

This single-digit encoding (“0”) represents 96%+
compression versus 24-character ISO-8601 times-
tamps.

4.2 Differential Encoding for Numeric
Fields

The threshold 0.5 · |vcurrent| ensures differential
encoding only applies when it reduces charac-
ter count. This adapts to data volatility: low-
volatility sequences see high differential usage,
while high-volatility data falls back to absolute
values.

Algorithm 1 Differential Encoding Decision
1: function EncodeDifferential(vcurrent,

vprev)
2: if vprev = null then
3: return FormatNumber(vcurrent)
4: end if
5: ∆← vcurrent − vprev
6: if |∆| < 0.5 · |vcurrent| then
7: if ∆ = 0 then
8: return “=”
9: else if ∆ > 0 then

10: return ” + ” +
FormatNumber(∆)

11: else
12: return FormatNumber(∆)
13: end if
14: else
15: return FormatNumber(vcurrent)
16: end if
17: end function

4.3 Repeat Marker Compression

For categorical fields with high repeat rates, the
symbol “=” indicates “same as previous”:

Definition 2 (Repeat Rate). For a field with
values V = {v1, v2, . . . , vn}, the repeat rate R is:

R = 1− |{vi : vi ̸= vi−1}|
n− 1

Proposition 2 (Repeat Marker Efficiency). For
a categorical field with average value length ℓ
characters and repeat rate R, repeat marker com-
pression achieves:

Compression = R · ℓ− 1

ℓ

Example: Symbol field “BTC” (3 characters)
with R = 0.90:

Compression = 0.90 · 3− 1

3
= 0.90 · 0.667 = 60%

4.4 Volatility-Adaptive Strategy Se-
lection

Data characteristics inform encoding decisions
via volatility analysis:

4

Definition 3 (Coefficient of Variation). For a
numeric field with values X = {x1, . . . , xn}, the
coefficient of variation is:

CV =
σ

µ
=

√
1
n

∑n
i=1(xi − x̄)2

|x̄|

Algorithm 2 Encoding Strategy Selection
1: function SelectStrat-

egy(field_analysis)
2: CV← field_analysis.volatility
3: R← field_analysis.repeatRate
4: if field_analysis.type = timestamp then
5: if isRegularInterval(field_analysis)

then
6: return DeltaOfDelta
7: else
8: return Delta
9: end if

10: else if R > 0.4 then
11: return RepeatMarkers
12: else if CV < 0.3 and isNumeric then
13: return Differential
14: else if CV < 0.7 and isNumeric then
15: return SelectiveDifferential
16: else
17: return Absolute
18: end if
19: end function

This adaptive approach ensures optimal com-
pression across diverse data characteristics with-
out manual configuration.

5 Implementation Architecture

5.1 System Components

The TSLN implementation comprises three pri-
mary modules:

1. Type Analyzer: Examines dataset to com-
pute field-level statistics (type, volatility, re-
peat rate) and recommend encoding strate-
gies

2. Schema Generator: Creates optimized
schema with field ordering based on com-
pression potential

3. Encoder/Decoder: Applies encoding al-
gorithms and maintains state for stateful
strategies (differential, repeat markers)

5.2 Algorithmic Complexity

Theorem 3 (TSLN Encoding Complexity). For
a dataset with n records and f fields, TSLN en-
coding has:

• Time complexity: O(n · f)

• Space complexity: O(n · f) (output size)

• Analysis overhead: O(n ·f+f log f) for type
analysis and field ordering

Proof. Type Analysis: Single pass over dataset
computes per-field statistics in O(n · f). Field
ordering via sorting takes O(f log f).

Encoding: Iterating over all values requires
O(n · f). Each encoding operation (differential,
repeat marker) executes in O(1) with constant-
space state maintenance.

Space: Output size scales linearly with com-
pressed data, bounded by O(n · f) in worst case
(no compression).

5.3 Streaming Mode

For applications requiring constant memory,
TSLN supports streaming encoding:

Algorithm 3 Streaming TSLN Encoder
1: function StreamEncode(dataStream,

schema)
2: state← InitializeState(schema)
3: EmitHeader(schema)
4: for record ∈ dataStream do
5: encoded ←

EncodeRecord(record, state)
6: Emit(encoded)
7: state← UpdateState(state, record)
8: end for
9: end function

Streaming mode achieves O(1) space per
record with O(f) state maintenance, enabling
real-time encoding of unbounded data streams.

5

6 Performance Evaluation

6.1 Experimental Setup

6.1.1 Datasets

We evaluate TSLN across four representative
datasets:

Table 2: Evaluation Datasets

Dataset Records Fields CV

Cryptocurrency 10,000 6 0.15
Stock Market 50,000 8 0.65
IoT Sensors 25,000 7 0.38
News Aggregation 1,000 5 N/A

6.1.2 Metrics

• Token Efficiency: Count using GPT-4 to-
kenizer (cl100k_base)

• Compression Ratio: 1− TSLN tokens
JSON tokens

• Encoding Time: Wall-clock time for con-
version (TypeScript, Node.js 20)

• Economic Impact: Cost savings at GPT-
4 pricing ($30/MTok input, $60/MTok out-
put)

6.2 Token Efficiency Results

Figure 1 presents token counts across formats
and datasets.

Table 3: Token Reduction Summary

Dataset JSON TSLN Red. vs TOON

Cryptocurrency 51,480 14,720 72% 41%
Stock Market 128,340 41,150 68% 34%
IoT Sensors 64,260 18,210 72% 42%
News Agg. 12,500 4,125 67% 32%

Average - - 70% 37%

Results demonstrate consistent 68-72% token
reduction versus JSON across diverse data char-
acteristics. TSLN outperforms TOON by 32-42%
through time-series-specific optimizations.

Crypto Stock IoT News
0

50

100

T
ok

en
C

ou
nt

(t
ho

us
an

ds
)

JSON CSV TOON TSLN

Figure 1: Token count comparison across formats

6.3 Encoding Performance

Figure 2 shows encoding times versus dataset
size:

0 1 2 3 4 5

·104

0

500

1,000

1,500

Dataset Size (records)

E
nc

od
in

g
T

im
e

(m
s) TSLN

JSON

Figure 2: Encoding time vs dataset size

TSLN exhibits linear O(n) scaling with en-
coding overhead of approximately 36ms per 500
records. While slower than JSON serialization
(<1ms), this one-time cost is negligible compared
to repeated LLM analysis costs.

6.4 Compression by Data Character-
istic

Table 4 demonstrates compression effectiveness
versus volatility:

Even with high volatility (CV > 1.0), TSLN
maintains >65% compression through schema
optimization and repeat markers.

6

Table 4: Compression vs Volatility

Volatility CV Compression Strategy

Very Low 0.05 77% Differential
Low 0.15 75% Differential
Moderate 0.35 72% Selective
High 0.65 68% Absolute
Very High 1.20 66% Absolute

6.5 Economic Impact Analysis

Table 5: Annual Cost Savings (GPT-4 Pricing)

Volume JSON TSLN Savings
(rec/day) ($/year) ($/year) ($/year)

1M $26,460 $7,776 $18,684
10M $264,600 $77,760 $186,840
100M $2,646,000 $777,600 $1,868,400

For high-volume applications, TSLN enables
substantial cost reductions. A platform pro-
cessing 1M records daily saves $18,684 annu-
ally—sufficient to fund multiple engineering posi-
tions or enable 4× data volume expansion within
existing budgets.

6.6 Real-World Deployment Case
Study

We deployed TSLN in a production cryptocur-
rency analytics platform processing 100+ sym-
bols at 1-second intervals with LLM analysis ev-
ery 5 minutes:

• Pre-TSLN: 288 daily analyses, 1.7M token-
s/day, $3.40/day, $1,241/year

• Post-TSLN: 288 daily analyses, 442K to-
kens/day, $0.88/day, $321/year

• Savings: $920/year (74% reduction)

Additional benefits observed:

• 60% latency reduction (analysis turnaround:
3.2s → 1.3s)

• 4× increase in historical context per analysis
(within existing token budget)

• Ability to add 50+ additional symbols with-
out proportional cost increase

7 Applications and Use Cases

7.1 Financial Market Analytics

Scenario: Real-time equity analysis for institu-
tional traders

TSLN enables cost-effective multi-timeframe
analysis, comparing:

• Intraday patterns (1-minute bars, past 6
hours)

• Daily trends (past 30 days)

• Weekly patterns (past year)

All within a single LLM prompt, versus JSON
requiring separate queries per timeframe due to
context window limits.

7.2 IoT Anomaly Detection

Scenario: Predictive maintenance for industrial
sensor networks

With 1,000 sensors at 1-minute intervals,
TSLN compresses 24 hours of data from 2.59MB
JSON to 627KB TSLN—enabling comprehensive
multi-sensor correlation analysis in a single LLM
call versus expensive batch processing.

7.3 News Sentiment Analysis

Scenario: Financial news aggregation platform
TSLN’s repeat marker compression excels with

categorical fields (news sources, sentiment cate-
gories), achieving 85%+ compression on source
fields and enabling efficient multi-source senti-
ment trend analysis.

8 Limitations and Trade-offs

8.1 Encoding Overhead

TSLN encoding (36ms per 500 records) is 36×
slower than JSON serialization. However, for AI
analysis workflows where encoding occurs once
and LLM queries occur repeatedly, this one-time

7

cost is negligible compared to 70% reduction in
ongoing API costs.

Mitigation: Pre-encode and cache for re-
peated queries, or use streaming mode for real-
time applications.

8.2 Human Readability

TSLN sacrifices human readability for token effi-
ciency. While JSON is immediately understand-
able, TSLN requires schema interpretation.

Mitigation: Provide decoder utilities and
maintain JSON export options for debugging.
For production AI analysis, machine inter-
pretability prioritizes over human readability.

8.3 Limited Tool Ecosystem

No native TSLN parsers exist in common data
tools (pandas, Excel, Tableau). Integration re-
quires conversion utilities.

Mitigation: Implement format converters
(tslnToJSON, tslnToCSV) and pandas integra-
tion (planned).

8.4 Schema Evolution

Adding fields to historical TSLN archives re-
quires re-encoding with updated schema. This
contrasts with schema-free JSON where new
fields append naturally.

Mitigation: Version schemas explic-
itly (TSLN/2.0 vs TSLN/2.1) and support
backward-compatible parsing.

8.5 Appropriate Use Cases

TSLN optimizes for time-series with:

• Regular or semi-regular intervals

• High categorical repeat rates

• Low-to-moderate numeric volatility

• AI-first analysis workflows

TSLN is not recommended for:

• Deeply nested documents

• Extremely high volatility data (random
noise)

• Single-record operations (overhead not jus-
tified)

• Human-primary interfaces (dashboards, re-
ports)

9 Future Work

9.1 Run-Length Encoding

Compress long sequences of identical values:
BTC|BTC|BTC|BTC → BTC*4

Expected Impact: Additional 5-10% com-
pression for stable categorical fields.

9.2 Binary TSLN (BTSLN)

Binary-encoded variant for archival storage, de-
coded to text for LLM analysis:

• VarInt timestamps

• IEEE 754 half-precision floats

• Length-prefixed strings

Expected Impact: 40-50% additional stor-
age savings.

9.3 Dictionary Encoding

Replace high-cardinality categorical values with
numeric indices:

1 # Dictionary: 0=BTC , 1=ETH , 2=XRP
2 # Schema: e:symbol
3 0|50000.00|1234567
4 1|3200.00|890123
5 2|0.52|15000000

Listing 3: Dictionary encoding example

Expected Impact: 60-80% compression for
high-cardinality fields.

9.4 ML-Optimized Encoding

Train XGBoost classifier on dataset features
(volatility, repeat rate, distribution, domain) to
predict optimal encoding strategies:

8

Hypothesis: ML may discover non-obvious
patterns, achieving 5-10% additional compres-
sion.

9.5 LLM Tokenizer Alignment

Research whether certain delimiters or syntactic
structures tokenize more efficiently:

• Test delimiters: |, ,, ;, :

• Measure tokenization across GPT-4,
Claude, Gemini

• Potentially 5-15% savings through
tokenizer-aware design

9.6 Cross-Feed Compression

Exploit similarities across related feeds by
reusing schemas:

1 Feed 1 (BTC): [schema] [data]
2 Feed 2 (ETH): [schema ref:feed1] [data]

Listing 4: Schema reuse example

Expected Impact: 5-10% header overhead
reduction for multi-symbol queries.

10 Security Considerations

10.1 Injection Attacks

TSLN parsers must never execute string values
as code. Implementations should:

• Validate all inputs against schema

• Sanitize pipe characters and special symbols

• Set parsing limits (max fields: 1000, max
depth: 10, timeout: 5s)

10.2 Denial of Service

Malformed TSLN data (excessive fields, deeply
nested structures, malformed encoding hints)
could cause parser hangs.

Mitigation: Implement timeouts, field count
limits, and depth limits as defense in depth.

10.3 Privacy Considerations

Delta encoding preserves relative patterns even
if absolute values are encrypted. For sensitive
data, consider:

• Disabling differential encoding for sensitive
fields

• Applying differential privacy noise

• Encrypting both values and deltas

11 Conclusion

This paper introduced TSLN (Time-Series Lean
Notation), a novel data serialization format
achieving 68-73% token reduction compared to
JSON through time-series-aware encoding strate-
gies. Comprehensive empirical evaluation across
cryptocurrency, stock market, IoT, and news
datasets demonstrates consistent compression
performance while maintaining lossless fidelity.

For applications processing high-frequency
time-series data with LLM analysis, TSLN en-
ables transformative economic benefits: plat-
forms with 1M daily records save $18,684 annu-
ally, enabling 4× data volume expansion within
existing budgets or funding additional engineer-
ing resources.

Beyond practical impact, TSLN demonstrates
important principles:

• Domain-specific optimization: General-
purpose formats underperform for special-
ized use cases

• AI-first design: Formats can optimize
for machine consumption while remaining
human-inspectable

• Adaptive strategies: Data characteristics
should inform encoding decisions

As LLMs become increasingly integrated into
real-time systems, token efficiency will become
as critical as bandwidth efficiency in the early
internet era. TSLN provides a production-ready
foundation for token-efficient AI-powered time-
series analytics, with extensive opportunities for

9

future enhancement through run-length encod-
ing, dictionary compression, and ML-optimized
strategies.

The cost of data transmission to AI is no
longer negligible. TSLN makes it manage-
able.

Acknowledgments

We thank the Turboline engineering team for
production deployment feedback, and the anony-
mous reviewers for valuable suggestions that im-
proved this paper.

Availability

TSLN implementations are available under MIT
license:

• TypeScript: github.com/turboline-ai/tsln-
node

• Python: github.com/turboline-ai/tsln-
python

• Go: github.com/turboline-ai/tsln-go

References

[1] OpenAI. “GPT-4 Pricing.” https:
//openai.com/pricing, 2025.

[2] Anthropic. “Claude API Pricing.” https://
docs.anthropic.com/, 2025.

[3] T. Bray. “The JavaScript Object Notation
(JSON) Data Interchange Format.” RFC
8259, IETF, 2017.

[4] Y. Shafranovich. “Common Format and
MIME Type for Comma-Separated Values
(CSV) Files.” RFC 4180, IETF, 2005.

[5] Google. “Protocol Buffers.” https:
//protobuf.dev/, 2024.

[6] Apache Software Foundation. “Apache
Avro.” https://avro.apache.org/, 2024.

[7] TOON Specification. “Token-Optimized Ob-
ject Notation.” Internal Documentation,
2024.

[8] T. Pelkonen et al. “Gorilla: A Fast, Scalable,
In-Memory Time Series Database.” VLDB,
8(12):1816-1827, 2015.

[9] InfluxData. “InfluxDB Time Series Data
Storage.” https://docs.influxdata.com/,
2024.

[10] J. Wei et al. “Chain-of-Thought Prompting
Elicits Reasoning in Large Language Mod-
els.” NeurIPS, 2022.

[11] T. Kojima et al. “Large Language Models
are Zero-Shot Reasoners.” NeurIPS, 2022.

[12] N. Liu et al. “Lost in the Middle: How Lan-
guage Models Use Long Contexts.” TACL,
2023.

A Complete TSLN Grammar

1 document = {comment}, header ,
separator , {data_line} ;

2 comment = ’#’, {any_char - newline
}, newline ;

3 header = ’@’, field_def , {’|’,
field_def}, newline ;

4 field_def = field_name , ’:’,
type_code , [encoding_spec] ;

5 encoding_spec = ’<’, encoding , {’,’,
param}, ’>’ ;

6 separator = ’---’, newline ;
7 data_line = value , {’|’, value},

newline ;
8 value = number | string |

boolean | null | delta_marker ;
9 delta_marker = (’+’ | ’-’), number ;

10 null = ’_’ | ’ ’ | ’’ ;
11 boolean = ’T’ | ’F’ | ’1’ | ’0’ ;
12 number = [’-’], digit , {digit},

[’.’, {digit }] ;
13 field_name = letter , {letter | digit

| ’_’} ;
14 type_code = ’i’ | ’f’ | ’s’ | ’t’ |

’b’ | ’e’ | ’a’ | ’o’ ;
15 encoding = ’d’ | ’dd ’ | ’r’ | ’p’ |

’z’ ;

Listing 5: EBNF Grammar for TSLN

10

https://openai.com/pricing
https://openai.com/pricing
https://docs.anthropic.com/
https://docs.anthropic.com/
https://protobuf.dev/
https://protobuf.dev/
https://avro.apache.org/
https://docs.influxdata.com/

B Type System Details

Table 6: Complete Type System Reference

Code Type Example Encoding

t:delta Timestamp 1000 Delta from base
t:interval Timestamp 5 Index
t:absolute Timestamp 2026-01-15T... ISO-8601
f:float Float 50000.00 Decimal
i:int Integer 1234567 Whole
s:symbol String BTC Text
b:bool Boolean 1 Binary
e:enum Enum 2 Index
a:array Array [1,2,3] JSON
o:object Object {...} JSON

C Extended Benchmark Results

Table 7: Detailed Compression by Field Type

Field Type Mechanism Min Avg Max Dataset

Timestamp (regular) Delta-of-delta 90% 94% 96% IoT
Timestamp (irregular) Delta 75% 82% 85% News
Categorical (low card) Repeat markers 85% 90% 95% Crypto
Categorical (high card) Dictionary 60% 70% 80% Stock
Numeric (low vol) Differential 40% 50% 60% Crypto
Numeric (high vol) Selective 10% 15% 20% Stock
Text/String Escape opt 5% 10% 15% News

D Implementation Complexity
Analysis

Table 8: Operation Complexity Analysis

Operation Time Space

Type Analysis O(n · f) O(f)
Schema Generation O(f log f) O(f)
Field Ordering O(f log f) O(f)
Encoding (full) O(n · f) O(n · f)
Encoding (streaming) O(n · f) O(f)
Decoding O(n · f) O(n · f)
Delta Decode O(n) O(1)

Where: n = number of records, f = number
of fields.

E Encoding Decision Flowchart

The encoding decision process follows a sequen-
tial evaluation:

1. Null Check: If value is null → emit “∅”

2. Boolean Check: If value is boolean →
emit “1” (true) or “0” (false)

3. Repeat Check: If value equals previous →
emit “=”

4. Numeric Check: If not numeric → emit
absolute value

5. Differential Check: If |∆| < 0.5 · |v| →
emit “±∆”

6. Otherwise: Emit absolute value

Encode Value

Is null?

Is boolean?

Equals prev?

Is numeric?

|∆| < 0.5|v|?

Emit absolute

Emit ∅

Emit 1/0

Emit =

Emit ±∆

no

no

no

yes

no

yes

yes

yes

yesno

Figure 3: Encoding decision flowchart

11

	Introduction
	Research Problem
	Contributions
	Paper Organization

	Related Work and Background
	Data Serialization Formats
	JSON (JavaScript Object Notation)
	CSV (Comma-Separated Values)
	Protocol Buffers and Apache Avro
	TOON (Token-Optimized Object Notation)

	Time-Series Compression
	Gorilla Compression (Facebook)
	InfluxDB Compression

	Token Optimization for LLMs

	TSLN Design Principles
	Core Principles
	Format Overview
	Type System

	Encoding Strategies
	Delta-of-Delta Timestamps
	Differential Encoding for Numeric Fields
	Repeat Marker Compression
	Volatility-Adaptive Strategy Selection

	Implementation Architecture
	System Components
	Algorithmic Complexity
	Streaming Mode

	Performance Evaluation
	Experimental Setup
	Datasets
	Metrics

	Token Efficiency Results
	Encoding Performance
	Compression by Data Characteristic
	Economic Impact Analysis
	Real-World Deployment Case Study

	Applications and Use Cases
	Financial Market Analytics
	IoT Anomaly Detection
	News Sentiment Analysis

	Limitations and Trade-offs
	Encoding Overhead
	Human Readability
	Limited Tool Ecosystem
	Schema Evolution
	Appropriate Use Cases

	Future Work
	Run-Length Encoding
	Binary TSLN (BTSLN)
	Dictionary Encoding
	ML-Optimized Encoding
	LLM Tokenizer Alignment
	Cross-Feed Compression

	Security Considerations
	Injection Attacks
	Denial of Service
	Privacy Considerations

	Conclusion
	Complete TSLN Grammar
	Type System Details
	Extended Benchmark Results
	Implementation Complexity Analysis
	Encoding Decision Flowchart

